Proof for Arithmetic Series
It is a simple proof for Arithmetic Progression, and one should memorise it.
Terms: \(a, a+d, a+d,..., a+(n-2)d, a+(n-1)d\)
Now set up two opposite direction sums
Sum1: \(S_n=(a)+(a+d)+(a+2d)+...+(a+(n-2)d)+(a+(n-1)d)\)
Sum2: \(S_n=(a+(n-1)d)+(a+(n-2)d)+...+(a+2d)+(a+d)+(a)\)
Sum1 + Sum2 results in
\(2S_n=(2a+(n-1)d)+(2a+(n-1)d)+(2a+(n-1)d)+\newline\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...+(2a+(n-1)d)+(2a+(n-1)d)\)
\(\therefore\)
\(2S_n=n[2a+(n-1)d]\)
\(S_n=\frac{n}{2}\left( 2a+(n-1)d\right) =\frac{n}{2}\left( a+\color{red} a+(n-1)d\right)\)
Where the red term is the last term, therefore we have
\(S_n=\frac{n}{2}\left( a+\color{red}last\,term\right)\,\,\,\,\,\,\,\square\)
\begin{equation*}
\int \frac{dx}{1+ax}=\frac{1}{a}\ln(1+ax)+C
\end{equation*}